Động lực học Từ quyển Sao Mộc

Plasma cùng quay và dòng điện xuyên tâm

Các dòng điện ở phần bên trong từ quyển Sao Mộc. (1): Sao Mộc, (2): vị trí Io, (3): vị trí Europa, (4): vị trí Ganymede, (5): vị trí Callisto, (6): vòng xuyến plasma Io, (7): phiến dòng, (8): dòng trực tiếp, (9): dòng xuyên tâm, (10): dòng quay về.

Nguồn động lực gây ra từ trường của Sao Mộc là sự tự quay của Sao Mộc.[30] Sao Mộc, xét ở khía cạnh này, có thể được coi như một máy phát điện đơn cực. Khi Sao Mộc quay, tầng điện ly chuyển động so với trường lưỡng cực từ của nó. Vì mômen lưỡng cực từ hướng theo véc tơ vận tốc góc của chuyển động tự quay của Sao Mộc,[12] lực Lorentz tác động vào tầng điện ly chuyển động sẽ kéo các điện tửđiện tích âm về các cực, và đẩy các ion dương về xích đạo.[31] Do đó, các cực tích điện âm còn vùng ở gần xích đạo tích điện dương. Vì từ quyển Sao Mộc chứa plasmađộ dẫn điện cao, mạch điện được hình thành và chạy qua nó.[31] Dòng điện trực tiếp[chú thích 4] chảy dọc theo các đường sức từ, từ tầng điện ly, đến phiến plasma xích đạo. Dòng điện này chảy theo hướng xuyên tâm ra khỏi Sao Mộc, trong phiến plasma xích đạo, và quay trở lại tầng điện ly, từ phía ngoài của từ quyển, dọc theo các đường sức từ nối đến các cực. Các dòng điện chạy dọc theo các đường sức từ được gọi là các dòng hướng từ trường hay các dòng Birkeland.[24] Các dòng xuyên tâm tương tác với từ trường của Sao Mộc, và lực Lorentz đẩy plasma quay cùng với hành tinh này quanh trục quay của nó. Đây là cơ chế chính giữ cho plasma ở phần trong từ quyển Sao Mộc cùng quay với Sao Mộc.[31]

Dòng điện chạy từ tầng điện ly đến phiến plasma sẽ mạnh ở những chỗ phiến plasma quay chậm hơn Sao Mộc.[31] Như đã đề cập ở những nội dung bên trên, plasma của Io bắt đầu quay chậm hơn Sao Mộc ở khoảng cách từ 20 đến 40 RJ tính từ tâm Sao Mộc. Đây là vùng chứa đĩa từ, nơi từ trường bị kéo bẹt ra.[32] Dòng điện trực tiếp mạnh chạy trong đĩa từ xuất phát từ dải vĩ độ hẹp, khoảng 16 ± 1° so với các từ cực của Sao Mộc. Vùng hình tròn hẹp này ứng với vòng cực quang của Sao Mộc (xem thêm nội dung bên dưới).[33] Dòng điện quay về chạy ở phần ngoài từ quyển, ở hoảng cách trên 50 RJ và đi vào tầng điện ly của Sao Mộc tại các cực, khép kín mạch điện. Tổng cường độ dòng điện xuyên tâm trong từ quyển Sao Mộc được ước lượng vào khoảng 60 triệu đến 140 triệu ampe.[24][31]

Việc duy trì plasma cùng quay với Sao Mộc dẫn đến việc chuyển động năng quay của Sao Mộc thành động năng của plasma.[6][23] Như vậy, từ quyển Sao Mộc được cung cấp năng lượng bởi sự tự quay của Sao Mộc, trong khi từ quyển của Trái Đất được bổ sung năng lượng chủ yếu bởi gió mặt trời.[23]

Hoán đổi do bất ổn và tái kết nối

Từ quyển Sao Mộc nhìn từ cực bắc xuống.[34] (1): gió mặt trời, (2): cung sốc, (3): biên từ, (4): dòng điện xoáy phương vị, (5): khối plasma được hình thành, (6): khối plasma bị đẩy ra, (7): Sao Mộc, (8): vòng xuyến plasma Io, (9): phiến plasma cùng quay, (10): đuôi từ và dòng phiến trung hòa.

Vấn đề chính gặp phải khi giải thích động lực học của từ quyển Sao Mộc là sự vận chuyển plasma lạnh và đậm đặc từ vòng xuyến plasma Io, ở khoảng cách 6 RJ, ra phần ngoài từ quyển, ở khoảng cách 50 RJ.[32] Cơ chế chính xác cho quá trình này vẫn chưa được hiểu đầy đủ, và đang được giả định là do sự khuếch tán plasma nhờ vào hoán đổi do các quá trình bất ổn định. Quá trình này tương tự như bất ổn định Rayleigh-Taylor trong động lực học chất lưu.[22] Với từ quyển Sao Mộc, lực ly tâm đóng vai trò như trọng trường; và chất lưu có trọng lượng riêng nặng hơn chính là plasma lạnh và đậm đặc từ Io, trong khi chất lưu nhẹ hơn là plasma nóng và loãng đến từ phần ngoài từ quyển.[22] Sự bất ổn định dẫn đến sự hoán đổi các khối plasma giữa phần trong và phần ngoài của từ quyển. Các khối rỗng và bình thường "nổi" ở phần ngoài từ quyển di chuyển về phía Sao Mộc do sự bất ổn định, đẩy các khối nặng chứa plasma của Io về phía đi ra xa khỏi Sao Mộc.[22] Sự hoán đổi các khối plasma này là một dạng nhiễu loạn của từ quyển.[35]

Bức tranh giả định về sự hoán đổi của các khối plasma phần nào được xác nhận bởi các quan sát từ tàu vũ trụ Galileo. Tàu này đã phát hiện các vùng có mật độ plasma giảm đột ngột kèm theo từ trường tăng đột ngột ở phần trong từ quyển.[22] Các vùng rỗng này có thể ứng với các khối rỗng đến từ phần ngoài từ quyển. Ở phần giữa từ quyển, Galileo đã phát hiện những dòng hạt năng lượng cao và từ trường tăng cường do plasma nóng đến từ phần ngoài từ quyển tác động lên đĩa từ.[36] Tuy nhiên cơ chế để vận chuyển plasma lạnh ra phía ngoài vẫn chưa được kiểm chứng bởi các quan sát.

Khi các khối chứa plasma lạnh của Io ra đến phần ngoài từ quyển, chúng trải qua quá trình tái kết nối, theo đó từ trường được tách khỏi plasma.[32] Các đường sức từ quay trở lại phần trong từ quyển, cùng với các khối plasma nóng và loãng, trong khi các khối plasma lạnh và đặc có thể bị đẩy ra ngoài dọc theo đuôi từ. Các quá trình tái kết nối có thể tương ứng với các sự kiện tái cấu trúc toàn cục đã được quan sát bởi tàu thăm dò Galileo, xảy ra đều đặn khoảng 1 lần mỗi 2 đến 3 ngày.[37] Các sự kiện tái cấu trúc thường bao gồm các biến đổi nhanh và hỗn loạn của cường độ và hướng của từ trường, cũng như những sự thay đổi đột ngột trong chuyển động của plasma, theo xu hướng không còn cùng quay với Sao Mộc và đi ra xa khỏi Sao Mộc. Chúng thường được quan sát ở nửa từ quyển đối diện với phía Mặt Trời và gần tiếp giáp với nửa từ quyển còn lại ở phía đông theo chiều quay của Sao Mộc - còn gọi là vùng bình minh của từ quyển.[37] Dòng plasma chảy về phía đuôi trong theo các đường sức từ mở được gọi là gió hành tinh.[21][38]

Các sự kiện tái kết nối tương tự như những cơn bão từ thứ cấp (substorm) trong từ quyển Trái Đất.[32] Sự khác biệt đến từ nguồn năng lượng. Bão từ thứ cấp trên Trái Đất liên quan đến việc lưu trữ năng lượng của gió mặt trời trong đuôi từ và những đợt giải phóng năng lượng dự trữ này qua các sự kiện tái kết nối trong phiến dòng trung hòa của đuôi từ, sinh ra các khối plasma di chuyển xuôi theo đuôi.[39] Trái lại, trong từ quyển Sao Mộc, năng lượng quay được dự trữ trong đĩa từ và được giải phóng khi các khối plasma tách khỏi nó.[37]

Ảnh hưởng của gió mặt trời

Tương tác giữa gió mặt trời và từ quyển Sao Mộc.

Tuy rằng động lực học của từ quyển Sao Mộc phụ thuộc vào nguồn năng lượng nội tại của Sao Mộc, gió mặt trời vẫn đóng một vai trò nhất định,[40] đặc biệt trong việc cung cấp các proton năng lượng cao.[chú thích 5][7] Cấu trúc của phần ngoài từ quyển cho thấy một số đặc điểm của từ quyển được định hình bằng gió mặt trời, bao gồm sự bất đối xứng giữa vùng bình minh và vùng hoàng hôn, là hai vùng nằm ở ranh giới giữa nửa từ quyển hướng về phía Mặt Trời và nửa còn lại.[24] Cụ thể, đường sức từ ở vùng hoàng hôn, là một trong hai vùng nêu trên nằm ở phía tây khi xét theo chiều tự quay của Sao Mộc, bị bẻ cong theo hướng ngược với ở vùng bình minh, vùng nằm ở phía đông.[24] Ngoài ra, vùng bình minh còn chứa các đường sức từ mở kết nối đến đuôi từ, trong khi ở vùng hoàng hôn, các đường sức từ đều khép kín.[19] Các quan sát này cho thấy các quá trình tái kết nối được vận hành bởi gió mặt trời, tương tự như chu kỳ Dungey trên Trái Đất, cũng xảy ra trong từ quyển Sao Mộc.[32][40]

Mức độ ảnh hưởng của gió mặt trời lên động lực học của từ quyển Sao Mộc, tuy vậy, vẫn chưa được biết rõ;[41] nó có thể mạnh hẳn lên trong thời kỳ có nhiều hoạt động Mặt Trời.[42] Các bức xạ vô tuyến,[4] quang học và tia X,[43] từ cực quang, cũng như phát xạ xincrôtron từ vành đai bức xạ đều cho thấy sự tương quan với áp suất gió mặt trời, gợi ý rằng gió mặt trời có thể tác động vào tuần hoàn của plasma hoặc điều chỉnh một số quá trình vật lý bên trong từ quyển.[37]

Tài liệu tham khảo

WikiPedia: Từ quyển Sao Mộc http://icymoons.com/europaclass/Cooper_gllsat_irra... http://www.nature.com/nature/journal/v415/n6875/fu... http://www.bu.edu/csp/uv/cp-aeronomy/Bhardwaj_Glad... http://adsabs.harvard.edu/abs/1955JGR....60..213B http://adsabs.harvard.edu/abs/1959AJ.....64S.329D http://adsabs.harvard.edu/abs/1974JGR....79.3501S http://adsabs.harvard.edu/abs/1993RPPh...56..687R http://adsabs.harvard.edu/abs/1995EOSTr..76..313H http://adsabs.harvard.edu/abs/1998JGR...10317523W http://adsabs.harvard.edu/abs/1998JGR...10320159Z